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Abstract

A stochastic inter-particle collision model for particle-laden flows to be applied in the frame of the Euler/
Lagrange approach is introduced. The model relies on the generation of a fictitious collision partner with a
given size and velocity, whereby no information is required on the actual position and direction of motion
of the surrounding real particles. However, the fictitious particle is a representative of the local particle
phase properties. In sampling the velocity of the fictitious particle correlation with the velocity of the real
particle as a consequence of turbulence is accounted for. The occurrence of a collision is decided based on
the collision probability according to kinetic theory. For validating the collision model, results from large
eddy simulations (LES) are used for monodisperse particles being dispersed in a homogeneous isotropic
turbulence and a binary mixture of particles. In the case of the binary mixture two situations are consid-
ered; a granular medium without particle-flow interaction and two fractions of particles settling under the
action of gravity in an isotropic homogeneous turbulence. For all the considered test cases the agreement of
the model calculations with the results obtained by LES was found to be very good. © 2001 Elsevier
Science Ltd. All rights reserved.
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1. Introduction

Turbulent gas—solid flows with high particle loading are frequently found in technical and
industrial processes. Examples are pneumatic conveying, fluidised beds, vertical risers, particle
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separation in cyclones, mixing devices, and others. In such particle-laden flows the particle be-
haviour may be considerably affected by inter-particle collisions in addition to aerodynamic
transport and turbulence effects if the mass loading is high or regions of high concentration de-
velop as a result of inertial effects (Sommerfeld, 1995). Quite a number of theoretical studies on
the collision rate of particles or droplets in turbulent flows have been published in the past. A
detailed review was given for example by Williams and Crane (1983) and Pearson et al. (1984).
Recently, also the method of direct numerical simulation (DNS) is being extensively used for the
analysis of inter-particle collisions mainly in isotropic turbulent flows applying a particle tracking
approach with point-particles (Sundaram and Collins, 1997; Wang et al., 1998; Zhou et al., 1998;
Mei and Hu, 1999). The most realistic collision scheme in these studies was used by Sundaram and
Collins (1997) who utilised hard sphere collisions similar to the present study, as will be dem-
onstrated below. In all other publications somewhat artificial collision schemes are applied. Some
of them are closer to describe an agglomeration process, as for example the “throw away” model
of Mei and Hu (1999). In the DNS studies of Wang et al. (1998) and Zhou et al. (1998) several
different collision schemes were tested, all of which are not very realistic with regard to the ap-
plication in technical systems (Mei and Hu, 1999). However, in some cases the particle volume
concentration is so low that one may assume that the post-collision treatment has no strong effect
on the derived collision statistics (Mei and Hu, 1999).

In turbulent flows two limiting cases may be identified by using a particle Stokes number which
is defined as the ratio of particle response time, 7, to the relevant time scale of turbulence, T

Tp

St = T (1)
In the present work, the integral time scale of turbulence is most suitable, since rather inertial
particles with respect to the dissipation scales of turbulence are considered. For particles which
are small compared with the Kolmogorov length scale, and completely follow the turbulence (i.e.
St — 0), Saffman and Turner (1956) provided an approximate expression for the collision rate of
droplets in atmospheric turbulence. The collision rate (i.e. collisions per unit volume and time) for
two droplet size classes with the radii R,; and R, ; and with the number concentrations n,; and n,,
(i.e. particles per unit volume) is given by

8\ 112 e\ 1/2
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where € is the dissipation rate of turbulent energy and v is the kinematic viscosity. Hence, for this
limiting case the collision rate depends solely on droplet size, concentration and the local velocity
gradient and therefore is called collision rate due to isotropic turbulent shear.

The other limiting case is the kinetic theory for St — oo, where the particle motion is completely
uncorrelated with the fluid and hence the velocity of colliding particles is also uncorrelated. This
case was analysed by Abrahamson (1975) for heavy particles in high intensity turbulence ne-
glecting external forces, which implies that there is no mean drift between the particles. The re-
sulting collision rate between two particle classes is given by

Ny =227 nyinp j(Rys + RPJ)Z\/ Thi+ 0h (3)
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where o, is the mean fluctuating velocity of the particles assuming that all components are
identical (i.e. isotropic fluctuating motion aé = u_g = v_g = w—g). In practical two-phase flows the
two limits are rarely met, rather the particles may partially respond to turbulence. Hence, the
velocities of colliding particles will be correlated to a certain degree, since they are transported in
the same turbulent eddy upon collision. The degree of correlation depends on the turbulent Stokes
number defined above (Eq. (1)). An analysis of this effect was performed by Williams and Crane
(1983) and an expression for the collision rate of particles in turbulent flows covering the entire
range of particle Stokes numbers and accounting for a possible correlation of the velocities of
colliding particles was suggested. The expression for the collision rate is given in terms of particle
concentration, particle relaxation times (i.e. Stokes numbers), turbulence intensities, and turbu-
lent scales.
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Here L, is the integral length scale of turbulence, % the mean relative velocities between colliding
particles, o the fluctuating velocity of the fluid assuming isotropic turbulence, and p and v are the
density and the kinematic viscosity of the fluid. The Stokes numbers of the two particle classes are
defined in terms of the integral time scale of turbulence. A universal solution for the mean relative
velocity between the particles was determined by fitting the results for small and large Stokes
numbers and is given by Williams and Crane (1983)

1/2
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(5)

A similar expression which accounts for the correlated motion of particles was introduced by
Kruis and Kusters (1997). However, their analysis accounts for the added mass term which be-
comes for example important for liquid—solid systems. However, in the present case (i.e. solid
particles in air) the resulting additional terms reduce to unity due to the large ratio of turbulent
integral time scale to the Kolmogorov time scale.

Modelling of inter-particle collisions in the frame of the Euler/Lagrange method for the nu-
merical calculation of two-phase flows has been based so far mainly on two approaches: a direct
simulation and a model based on concepts of the kinetic theory of gases. The most straightfor-
ward approach to account for inter-particle collisions is the direct simulation approach. This
requires that all the particles have to be tracked simultancously through the flow field. Thereby,
the occurrence of collisions between any pair of particles can be judged based on their positions
and relative motion during one time step. Once a collision occurs the change in translational and
angular particle velocities can be determined by solving the equations for the conservation of
linear and angular momentum in connection with Coulomb’s law of friction. When the duration
of the collision process is negligibly small compared to the time of collisionless motion, the size of
the colliding particles is not too different, and the ratio of solid particle density to the fluid density
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is much larger than unity, fluid dynamic effects during the collision process can be neglected and
the collision efficiency may be assumed as 100%. This assumption was also made in the present
study, however in a recent work the presented stochastic collision model was extended in order to
account for a reduced collision efficiency when the colliding particles have a considerable differ-
ence in size (Ho and Sommerfeld, 2001).

A direct simulation method of inter-particle collisions was for example applied by Tanaka and
Tsuji (1991) for the calculation of vertical gas-particle flow. This calculation was feasible only by
considering a relatively short element of a pipe and applying periodic boundary conditions.
Furthermore, rather coarse particles were considered (i.e. particle diameters of 0.4 and 1.0 mm),
whereby the number of particles for a given mass loading was relatively small and hence only
about 1000 particles had to be tracked simultaneously through the flow field. When more complex
flow configurations and smaller particles are considered, a direct simulation of inter-particle
collisions is not feasible due to the high computational effort and the large storage requirements.
Nevertheless, the results of Tanaka and Tsuji (1991) showed a very interesting effect, namely that
the particle velocity fluctuations become increasingly isotropic with increasing particle mass
loading and hence increasing collision frequency.

The consideration of inter-particle collisions in the most commonly applied Lagrangian ap-
proach where one particle is tracked after the other through the flow field requires the derivation
of an appropriate collision model, since no information is available about neighbouring particles.
Recently, Sommerfeld and Zivkovic (1992) and Oesterle and Petitjean (1993) developed inde-
pendently a similar stochastic particle—particle collision model which was based on the calculation
of the collision probability along the particle trajectory in analogy with kinetic theory of gases.
From the value of the collision probability it was decided whether a collision takes place or not. In
case a collision occurs a fictitious second particle was generated according to the local probability
density functions of particle diameter and velocities. By solving the conservation equations for
linear and angular momentum the post-collision velocities of the considered particle were cal-
culated. The post-collision properties of the fictitious particle were not of further interest in the
calculations.

In the inter-particle collision model of Oesterle and Petitjean (1993) a Maxwellian distribution
function of the relative velocity between the particles was assumed and it was defined as the
difference of the instantaneous velocity of the considered particle and the particle mean velocity in
the control volume associated with the particle position which is somewhat inconsistent. More-
over, the particle size distribution was not considered in the model of Oesterle and Petitjean
(1993). In the inter-particle collision model introduced by Sommerfeld and Zivkovic (1992) the
velocity distribution function and the mean relative velocity were determined by the integration
according to Abrahamson (1975). The particle size distribution was considered by introducing a
log-normal distribution function into the collision probability.

Calculations performed by Sommerfeld and Zivkovic (1992) and Oesterle and Petitjean (1993)
demonstrated that inter-particle collisions have a strong influence on the profile of the particle
concentration in a developed horizontal gas-particle channel flow, even at a particle mass loading
well below unity.

A detailed numerical analysis of the effect of inter-particle collisions on the properties of de-
veloped particle-laden horizontal channel flows was also performed by Burmester De Bessa Ribas
et al. (1980) and Lourenco et al. (1983) using the Boltzmann statistical method. Moreover, the
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influence of the particle phase on the gas flow was considered and the resulting deformation of the

gas velocity profile with increasing particle mass loading was demonstrated. The results fur-

thermore revealed that the particle fluctuating motion in the streamwise direction is reduced with
increasing particle mass loading and hence increasing collision frequency between the particles.

These observations were in agreement with experimental results. Also in these studies rather large

particles were considered whereby the influence of turbulence on particle motion could be ne-

glected.

So far in most of the modelling approaches to account for inter-particle collisions in the Euler/
Lagrange approach, the correlation of the velocities of colliding particles was not respected. In the
present paper a stochastic inter-particle collision model is presented which accounts for the
correlation effect (Sommerfeld, 1999). At present however, the model will be restricted to rela-
tively large and inertial particles with respect to the dissipation scales of turbulence, as found in a
number of technical applications, as for example pneumatic conveying. Additionally, it is assumed
that the size of the particles is not too different whereby the hydrodynamic interaction may be
neglected, resulting in a 100% collision efficiency. This implies that the relevant collision mech-
anism in the considered test cases is turbulent inertia and differential settling. As a result of this
fact, one may use large eddy simulations (LES) for validation, since the particle motion is
dominantly controlled by the most energetic turbulent eddies. This implies a particle response
time which is not very much smaller than the integral time scale of turbulence. In Section 2 an
estimation of the importance of inter-particle collisions in gas-particle flows will be presented.
Thereafter (Section 3), the assumptions for the fluid flow and the particle tracking approach will
be introduced. For the latter the applied model for generating the fluid velocity along the particle
trajectory is of great importance. The developed stochastic inter-particle collision model is in-
troduced in Section 4. The model calculations are validated based on data obtained by LES for
three test cases:

e Monosized particles dispersed in a isotropic homogeneous turbulence without considering
gravity are considered in Section 5 (Lavieville et al., 1995).

o A binary mixture of particles without particle-fluid interaction (i.e. a dry granular medium) and
without gravity is considered in Section 6 (Gourdel et al., 1998). In this case the particle motion
is solely induced by inter-particle collisions.

o A binary mixture settling under gravity in a isotropic homogeneous turbulence (Gourdel et al.,
1998, Gourdel et al., 1999) is also analysed in Section 6.

It should be noted at this point that for the case of monodisperse particles in homogeneous

turbulence the effect of preferential concentration (Sundaram and Collins, 1997) was also ob-

served in the LES for the smaller Stokes numbers. For the binary mixture, there was no mea-
surable effect of preferential concentration. The introduced inter-particle collision model however
does not explicitly account for this physical phenomenon.

2. Importance of inter-particle collisions
In the following the importance of inter-particle collisions on the development of fluid-solid

flows is discussed. The inter-particle collision probability depends mainly on the particle
concentration, the particle size, and the fluctuating motion of the particles. A classification of



1834 M. Sommerfeld | International Journal of Multiphase Flow 27 (2001) 1829-1858

particle-laden flows in terms of the importance of inter-particle collisions may be based on the
ratio of particle response time 7, to the averaged time between collisions 7. (Crowe, 1981). In
dilute two-phase flows the particle motion will be mainly governed by fluid dynamic transport
effects, i.e. drag force, lift forces, and turbulence. On the other hand dense flows are characterised
by high collision frequencies between particles and hence their motion is dominantly influenced by
inter-particle collisions. Fluid dynamic transport effects are of minor importance. Therefore the
two regimes are characterised by the following time scale ratios:

e dilute two-phase flow:

Do, (6)

Te
e dense two-phase flow:

oo, (7)

Te
This implies that in dense two-phase flows the time between particle-particle collisions is smaller
than the particle response time, whereby the particles are not able to completely respond to the
fluid flow between successive collisions. This regime may occur when either very large particles at
a low number density are present in the flow or in the case of small particles when the number
density is large. In dilute two-phase flows collisions between particles may also occur and influ-
ence the flow development to a certain degree, but the time between successive inter-particle
collisions is larger than the particle response time, whereby the fluid dynamic transport of the
particles is the dominant transport effect.

In the following section an estimate of the boundary between the two regimes will be given for

turbulent particle-laden flows. The average time between successive inter-particle collisions results
from the average collision frequency

1
T
The collision frequency of one particle (i.e. n,; = 1) with diameter D,; and velocity i, with all

other particle classes (i.e. Ngass) With diameter D, ; and velocity i, ; can be calculated according to
kinetic theory of gases from

Te

(®)

Nc Nelass A 2. .
Jo=-—= > {Z(Dp,i + Dpj) [idp; — up.jlnp,j}, )
p:l j=1

where N, is the total number of collisions of particle i with all other particles and /4(D,; + D,,)’

is the collision cross-section, respectively. The main assumptions associated with the use of Eq. (9)

are the following:

e The particle number concentration is small enough that the occurrence of binary collisions
prevails.

e On the other hand the particle number concentration must be large enough to allow a statistical
treatment.

e The velocities of the colliding particles are not correlated.
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An analytic solution of Eq. (9) is only possible for relatively simple cases. For the estimation of
the collision frequency, the derivation of Abrahamson (1975) is followed, yielding a collision rate
solely determined by turbulence (i.e. the resulting fluctuating motion of the particles) as given by
Eq. (3). Furthermore, a monodisperse particle phase is considered, whereby the mean fluctuating
velocity is a constant. Hence the collision frequency is obtained as a function of the particle di-
ameter D,, the total particle number concentration 7, and the mean fluctuating velocity of the
particles o,

fo= 4n1/2npr)ap. (10)

Introducing the volume fraction of the particles « = n/6D)N,, one obtains after some re-
arrangements

24 oo,
fc—mD—p (11)

or similarly the collision frequency can be expressed as a function of the mass loading 1 = s, /1,
which is often used to characterise gas—solid flows:

24 p no
fc____p (12)

=7 o D,
By introducing now the collision frequency and the particle response time (i.e. the Stokesian
response time 1, = plez3 /18p) into Eq. (6) the limiting particle diameter for a dilute two-phase
flow can be determined as a function of volume fraction or mass loading, respectively:

3
dan_H

D, <
P47 apyoy

(13)

D, < Enl/ 2 K .
4 hpop

Considering a gas-solid flow with the properties (p=1.15kg/m? p, = 2500 kg/m?’,
=184 x107° kg/m s) the limiting particle diameter which separates dilute and dense two-
phase flows is calculated as a function of volume fraction and mass loading with the particle
velocity fluctuation as a parameter. The result is given in Fig. 1 where the dilute two-phase flow is
the domain left of the individual lines and the dense flow regime is on the right-hand side. With
increasing particle diameter associated with higher particle inertia, the range of dilute flows is
shifted towards lower volume fractions and mass loading. With increasing velocity fluctuation of
the particles the boundary line between dilute and dense two-phase flow is shifted to the left, i.e. to
smaller mass loading of the dispersed phase. From Eq. (12) it is obvious that the collision fre-
quency increases with the velocity fluctuation.

3. Fluid flow and particle tracking

In the three test cases considered here, the flow field, i.e. turbulence intensities and turbulence
length and time scales are prescribed according to the LES. The mean continuous phase velocity is
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Fig. 1. Regimes of dilute and dense gas—solid flows in dependence of mass loading (and volume fraction) and particle
diameter for different particle velocity fluctuations (p = 1.15 kg/m’, pp, = 2500 kg/m’, i = 18.4 x 107 kg/(m s)).

zero in both cases. In order to solely assess the effects of inter-particle collisions, two-way coupling
effects are not considered in all the test cases. The particle trajectories are calculated sequentially
and the particle phase properties are ensemble averaged for each control volume in the compu-
tational domain. This approach is possible, since only the steady-state situation is of interest. The
present approach may be however also applied if a simultaneous tracking approach is adopted.
The forces which are considered in the equation of motion for the particles are the drag and
gravity forces only. Hence the following ordinary differential equations are solved along the
particle trajectory for the three components of the particle location vector and the particle velocity
vector:

doxp
L
dr p,i»
Qupi 3 P i — | + o
dt _4ppr D\ p.i p &i-
For the drag coefficient the following correlation is used:
cp = 24.0/Rey(1.0 - 0.15Re)®7), Re, < 1000, (15)

ep = 0.44, Re, > 1000.

In order to calculate the particle motion Eq. (14) were integrated over the time step A¢ and nu-
merically solved along the trajectory. The time step was fixed with a value of 0.5 ms which is
sufficiently small with respect to the particle response time and the inter-particle collision time.
Periodic boundary conditions are applied for the particles according to the approach adopted in
the LES, i.e. particles leaving the computational domain are re-injected on the opposite side with
the same velocity.

In order to generate the instantaneous fluid velocity along the particle trajectory the so-called
Langevin equation model is applied (Sommerfeld et al., 1993). In this approach, the fluid
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fluctuation at the new particle position is correlated with that at the old position through a
correlation function R, ;(A¢, Ar) in the following way:

. = Rou(At, Ar)ul + 6,1 /1 = R2, (At, Ar)E,

n

vl = Roo(AL AF)OL + 00y /1 — R2 (AL, Ar)L, (16)

W, = Ro(At, Ar)W + o\/ 1 —R2 (At,Ar)y,

n+1 p,w

where &,(, and y are the Gaussian random numbers with a mean value of zero and a standard
deviation of one. The first term on the right-hand side represents the correlated part and the
second term the random contribution to the velocity fluctuation. The correlation function
R, :(At, Ar) is composed of a Lagrangian and Eulerian part, in order to account for the crossing
trajectories effect in case gravity is considered:

Ryi(At, Ar) = Ry (Af) x Re(Ar), (17)

where the index i stands for the three components in the x, y, and z directions. For the Lagrangian
velocity auto-correlation function an exponential form is selected

Ri(Ar) = exp (—§>. (18)

The Lagrangian integral time scale, 71, is determined from

2
T = CT% with ¢ = 0.4, (19)

where of is the mean fluctuation of the fluid at the particle position, calculated from the turbulent
kinetic energy by ¢ = 2/3k. In order to match the Lagrangian integral time scale of the LES, the
dissipation rate ¢ was prescribed accordingly. The spatial correlation of the individual velocity
components for two arbitrary points in space can be obtained from the Eulerian correlation
tensor, Rg ;;(Ar), by using the longitudinal and transverse correlation coefficients, f/(Ar) and g(Ar)
(Von Karman and Horwarth, 1938).

rir;

Rey(Ar) = {/(Ar) — g(An)} 2 + g(Ar)3. (20)

In the present calculations only the three main components (i.e. Rg(Ar), R, (Ar) and Rg.(Ar))
are considered. The longitudinal and transverse correlation coefficients for homogeneous and
isotropic turbulence are given by

Ar
)

Ar —Ar
g(Ar), = (1 — 2LE¢> exp < I, )

The integral length scales for the three directions (i.e. streamwise component x and lateral
components x and y) were determined from

(21)
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LE,x =1.1 TLGF, LE,y = LE,z =0.5 LEJ. (22)

The coefficient 1.1 was introduced in order to match the turbulent length scales of the LES.

4. Inter-particle collision model

The developed stochastic inter-particle collision model relies on the generation of fictitious
collision partners and the calculation of the collision probability according to kinetic theory. The
advantage of this model is that it does not require information on the location of the surrounding
particles and hence it is also applicable if a sequential tracking of the particles is adopted, as
usually done when applying the Euler/Lagrange approach to stationary flows. During each time
step of the trajectory calculation of the considered particle a fictitious second particle is generated.
The size and velocity of this fictitious particle are randomly sampled from local distribution
functions.

The sampling of the fictitious particle size requires information on the local particle size dis-
tribution. Since in practical situations the particle size distribution may change throughout the
flow field due to the different responses of different sized particles, the particle size distribution
(i.e., the number frequency distribution) has to be sampled and stored for each control volume of
the entire computational domain. This requires the size distribution to be resolved by a number of
size classes. Typically about 20 size classes are sufficient. In many cases the particle size distri-
bution may be represented by a log-normal distribution function which is characterised by a
number mean diameter and a standard deviation. In such a case, only these two properties have to
be stored for each control volume of the computational domain (Sommerfeld, 1995). Hence the
size of the fictitious particle is randomly sampled from such a distribution function. In the present
case where a binary mixture of particles with different densities is considered, a two-class density
distribution is used where the probability for each class corresponds to the relative number
concentrations. Therefore, the type of particle (i.e., heavy or light) is sampled from this two-class
distribution.

The velocity components of the fictitious particle are composed of the local mean velocities and
fluctuating components sampled from Gaussian velocity distributions with the local rms-value. In
case, a particle size distribution is considered, also the particle size-velocity correlation has to be
obtained for each control volume, i.e., the particle mean and rms velocities are sampled and stored
for each size class.

In generating the fictitious particle fluctuating velocities the correlation with the velocity of the
considered particle due to turbulence has to be respected. The degree to which the particle fluc-
tuating velocities are correlated depends on their response to the turbulent fluctuations. The
velocities of small particles will be strongly correlated, while those of very large particles are
completely uncorrelated (i.e., kinetic theory limit). The response of particles to turbulent fluctu-
ations is characterised in terms of the Stokes number, i.¢., the ratio of the particle response time to
the Lagrangian integral time scale of turbulence (Eq. (1)). The particle response time is determined
from the calculations accounting for non-linear drag and the Lagrangian integral time scale is
obtained from the turbulent dispersion model. In the developed collision model, the correlation of
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the fluctuating velocity components of the fictitious particle ug,; with those of the real particle
u'. . is accounted for in the following way by using the turbulent Stokes number:

real,i
u;ict,i - R(St)u;eal,i + O-P-,i 1 - R(St>26 (23)

Here o, 1s the local rms value of the particle velocity component i and ¢ is a Gaussian random
number with zero mean and a standard deviation of one. Hence, the sampled fluctuating velocity
components are composed of a correlated and a random part. With increasing Stokes number the
correlated term (first term in Eq. (23)) decreases and the random term increases accordingly.
Comparing model calculations with large eddy simulations (which will be introduced below) the
following dependence of the correlation function R(S?) on the Stokes number was found in the
present study:

R(St) = exp(—0.55 x S°%). (24)

The next step in the collision model is the determination of the probability for the occurrence of a
collision between the considered and the fictitious particle within the time step. This probability is
essentially the number of collisions within the time step which should be smaller than unity, if a
proper time step constraint is applied. The collision probability is calculated as the product of the
time step size At and the collision frequency given by kinetic theory:

T
4
where D,,; and D,,; are the particle diameters, |i,; — i, ;| is the instantaneous relative velocity
between the considered and the fictitious particle and 7, is the number of particles per unit volume
in the respective control volume. At this point it should be noted that if a particle size distribution
is considered, n, should be the number concentration of all particle fractions, since the fictitious
particle is sampled from the size distribution which already accounts for the probability of a
particle being in a certain size interval. In order to decide whether a collision takes place, a
random number RN from a uniform distribution in the interval [0,1] is generated. A collision is
calculated when the random number becomes smaller than the collision probability, i.e. if

RN < Py (26)

Peoi = folMt = = (Dy; 4 Dy ) Jitp; — ity j|npAt, (25)

Since the considered particle or computational particle represents a number of real particles it is
assumed that all these particles collide with the same number of fictitious particles. It is more
complicated to determine the position of the fictitious particle relative to the considered particle.
Since both particles move, any point on the surface of the particles is a possible point of contact.
Moreover, the probability density for the point of impact is not the same for every point on the
surface and strongly depends on the relative motion of the particles. Therefore, it is very difficult
to model the collision in the co-ordinate system of the flow field in which both particles move.
When the problem is however transferred into a co-ordinate system in which the fictitious particle
is fixed, the collision calculation becomes much simpler. In this situation, the point of impact on
the surface of the fictitious particle can only be located on the hemisphere facing the considered
particle (Fig. 2). Now a collision cylinder is defined as the domain where the centre of the fictitious
particle must be located if a collision takes place. It is physically obvious that the probability
density of finding the centre of the fictitious particle at some point in the perpendicular cross-
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Fig. 2. Particle—particle collision configuration in a co-ordinate system with a stationary collision partner .

section of the cylinder is uniform. Note that this does not imply a uniform probability density for
the points of impact on the particle surface. By generating two uniform random numbers XX and
ZZ in the range [0, 1], the location of the collision point in the longitudinal section of the collision
cylinder is defined by the lateral non-dimensional displacement, L (i.e. the lateral displacement is
normalised by the sum of the two particle radii), and the angle ¢ (Fig. 2)

L=+XX2+2Z7* withL <1,

27
¢ = arcsin(L). @)

In addition, the orientation of the collision plane in the cross-section of the collision cylinder (i.e.
the angle V) is randomly sampled from a uniform distribution in the range [0 < ¥ < 27].

The result of the sampling procedure for the impact point is given in Fig. 3. The distribution of
the impact points in the cross-section of the collision cylinder is relatively uniform (Fig. 3(a)).
However, the probability for the lateral displacement increases from zero at the axis of the col-
lision cylinder to the maximum at the outer edge (Fig. 3(b)). The probability of the collision angle
¢ follows, as expected, a sinusoidal distribution function (Fig. 3(c)).

The relations for the calculation of the post-collision velocities of the considered particle in
the co-ordinate system where the fictitious particle is stationary now reduce to the momentum
equations for an oblique central collision. By solving the momentum equations in connection
with Coulomb’s law of friction and neglecting particle rotation, one obtains the following
equations for the determination of the velocity components of the considered particle after
rebound:

1+e
I 1 — , 28

for T ( 1+ mpy /my > 22
¢ non-sliding collision:

N (1 L) (29)

1 + My /My
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Fig. 3. Probability distributions of sampled location of the impact point: (a) in the cross-section of the collision cyl-
inder, (b) lateral displacement L, (c) collision angle ¢.

o sliding collision:
u 1
=g (1 —p(le) 2t — 30
= (1 a1+ ), (30)

e condition for a non-sliding collision:
upl 7
LS| . 31
< qul e (3

Here e is the coefficient of restitution, u is the coefficient of friction, and my; and m, are the
masses of the considered and the fictitious particle, respectively. Finally, the velocities of the
considered particle are re-transformed in the original co-ordinate system.

An essential requirement for the collision model is however, that for each control volume the
particle size and the velocity distribution functions have to be sampled and stored. The local
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distribution functions of the particle phase properties are updated after each Lagrangian
calculation through an iterative procedure until these properties approach steady-state values.
Since in the first iteration no particle phase properties are available yet, the particle collision
calculation begins with the second Lagrangian calculation. When the effect of the particles on the
fluid flow is accounted for, this procedure is combined with the two-way coupling iteration
procedure (Kohnen et al., 1994).

5. Homogeneous isotropic turbulence

The first test case considered to validate the developed stochastic Lagrangian inter-particle
collision model is a homogeneous isotropic turbulence field in a cube with periodic boundary
conditions where data obtained by LES are available (Lavieville et al., 1995). The turbulence
characteristics and the particle properties are summarised in Table 1. The collision detection al-
gorithm adopted in the LES required to consider rather large particles (i.e. D, = 656 um). In
order to have particle response times which are in the order of the integral time scale of turbu-
lence, the particle material density was selected to be relatively small (Table 1). The resulting
turbulent Stokes numbers (Eq. (1)) are between about 0.8 and 6.0. However, the model calcu-
lations were also performed for a wider range of Stokes numbers as shown below. Since for this
case no gravity is considered the particle motion is solely controlled by turbulence and collisions.
The collisions are assumed to be fully elastic (i.e. e = 1.0, . = 0.0).

Additionally, Table 1 includes the value for the viscous dissipation estimated from the LES
based on the balance of the turbulent kinetic energy. This also gives an estimate of the Kol-
mogorov time scale which is about 15 times smaller than the integral time scale of turbulence.
Since these values may be only very approximately estimated from the LES a reliable determi-
nation of the collision rate introduced by Saffman and Turner (1956) for particles following the
fluid is unfortunately not possible in the limit of St — 0.

The model calculations were performed for 2000 particles each being tracked for 3 s. The
starting location of the particles was randomly selected within the entire computational domain of

Table 1

Turbulence characteristics and particle phase properties for the large eddy simulations
Gas phase rms velocity 0.3 m/s
Gas density 1.17 kg/m?
Dynamic viscosity 17.2 x 10°% kg/m s
Viscous dissipation (estimated) 6.17 m?/s?
Lagrangian integral time scale 23 ms
Kolmogorov time scale (estimated) 1.544 ms
Eulerian integral time scale 26 ms
Longitudinal Eulerian length scale 7.25 mm
Lateral Eulerian length scale 3.71 mm
Particle diameter 0.656 mm
Particle density 25,50,100,200 kg/m?
Turbulent Stokes number 0.79, 1.5, 2.9, and 5.7

Volume fraction 0.005-0.05
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0.2 m x 0.2 m x 0.2 m. The initial particle velocity components were sampled from a normal
distribution function with a mean velocity of zero and an rms value which was between 20% and
100% of that of the gas phase, depending on the particle Stokes number. Particles leaving the
computational domain at one face of the cube were re-injected on the opposite side with the same
velocity. This procedure was continued until the total tracking time of 3 s was reached. Then the
next particle trajectory was started.

As expected, the energy of the particles’ fluctuating motion decreases with increasing Stokes
number, since the particles become less responsive to the turbulent fluctuations (Fig. 4). For very
small Stokes numbers the ratio k,/k approaches unity, whereas for very large Stokes numbers the
ratio approaches zero. Both the model calculations and the simulations follow the same trend,
indicating that the particle-turbulence interaction is modelled properly (Fig. 4). The collisions
between the particles have no strong influence on the particles fluctuating motion, i.e. the results
for the different volume fractions are only slightly different. The effect of inter-particle collisions
on the fluctuating motion of the particles becomes more obvious when considering the Lagrangian
velocity correlation of the particles. This correlation function was calculated along the particle
trajectories for different time intervals from a starting time which allowed the particles to adjust to
the flow after being injected into the flow domain. Hence, the Lagrangian correlation function was
sampled by applying the following equation:

Rep, (1o + iAd) = ]% 3 up;j,k(l‘o) X up i (to + iA?) 7 (32)
k \/u;j(to) X u (to + iAt)

where the index j stands for the three velocity components, N is the number of particle trajec-
tories considered (typically 2000 for sampling the correlation function) and iAz is the time sep-
aration from the initial time with i being the number of equidistant time steps. In Fig. 5
Lagrangian correlation functions for different volume fractions (i.e. with inter-particle collisions)
are compared with those obtained without inter-particle collisions. It is obvious that due to the
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Fig. 4. Kinetic energy of the particle fluctuating motion as a function of the Stokes number (symbols of one kind
indicate the results for the different volume fractions).
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Fig. 5. Lagrangian correlation functions of the particles obtained from the model calculations for different volume
fractions (p, = 200 kg/m’, St = 5.7).

randomness of inter-particle collisions, the fluctuation velocity of the particles becomes more and
more uncorrelated with increasing volume fraction and hence increasing collision frequency.

By integrating the correlation function also the Lagrangian integral time scale of the particles
fluctuating motion may be obtained and compared with the LES data. This is done in Fig. 6 for
two particle densities (i.e. Stokes numbers of 1.5 and 5.7) by normalising the particles Lagrangian
time scale with the Lagrangian time scale of the fluid viewed by the particles. The agreement
between LES and model calculations is reasonably good also for this value. As a result of the
inertia of the heavier particles their Lagrangian integral time scale decays faster due to collisions
than that of the lighter particles with increasing volume fraction.

An important feature of the developed stochastic collision model is the consideration of the
correlated motion of colliding particles. This effect is pronounced when the particle response time
is in the order of the integral time scale of turbulence or even lower. The relative velocity

614 LES Model ]
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Fig. 6. Lagrangian integral time scale as a function of the volume fraction for light and heavy particles, comparison of
LES data with model calculations (p, = 50 kg/m3, St=1.5, p, =200 kg/mB, St =5.7).
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distribution function (PDF) for particles with a Stokes number of 0.79, shown in Fig. 7(a), reveals
the importance of accounting for this correlation. Please note that the modulus of the relative
velocity includes all three velocity components. If the fluctuating velocity of the fictitious particle
is not correlated with that of the considered particle a rather wide velocity distribution with a
mean value of 0.48 m/s is obtained. The correlated model on the contrary gives a more narrow
relative velocity distribution with a mean value reduced to 0.33 m/s. The comparison of the model
calculations with the large eddy simulations shows a rather good agreement if the degree of
correlation is modelled appropriately by specification of the model constants in the correlation
function (Eq. (24)).

Also the distribution function of the angle between the trajectories of colliding particles is
considerably shifted towards smaller angles when accounting for the correlation of velocities in
the model (Fig. 7(b)). The calculated angle probability density function (PDF) agrees well with the
LES result and a mean value of 1.07 rad is calculated. Without the velocity correlation a larger
mean value of 1.76 rad is obtained.
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Fig. 7. Distribution of the mean relative velocity modulus between colliding particles, (a) and the particle—particle
collision angle (b), comparison of the stochastic model with large eddy simulations (p, = 25 kg/m3, St=0.79, a =
0.0352).
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When considering heavier particles (i.e. p, =200 kg/m3 St = 5.8) the relative velocity is
slightly underestimated by the correlated model in comparison to the LES results but the particle—
particle collision angle matches fairly well (Fig. 8).

From the above results it is obvious that the correlated motion of particles in turbulent flows
has the following consequences:
¢ reduction in the mean relative velocity,
¢ reduction in the standard deviation of the relative velocity distribution and
¢ reduction of the particle—particle collision angle.

In the following these effects will be demonstrated for a wider range of Stokes numbers than
those considered in the computationally expensive LES. The effect of Stokes number on the mean
relative velocity of colliding particles is illustrated in Fig. 9 for model calculations with and
without correlation. As a result of the higher agitation of small particles by turbulence the un-
correlated model considerably overpredicts the mean relative velocity. The correlated model
predicts an increase of the mean relative velocity with decreasing Stokes number up to a Stokes

5 T T T T
- LES
4 ---- Uncorrelated Model | -
—— Correlated Model
)
S 31 i
2
o
L 2] .
1 1 \\..\.'_. T
0 T T ;IT. - T
0.0 0.2 0.4 0.6 0.8 1.0
(a) Relative Velocity of Colliding Particles [m/s]
1 -0 T T T T T T
- LES
0.8 ---- Uncorrelated Model | A
—— Correlated Model
oy
c
@
-]
o
Qo
LC
0.

0 : T T T T T .I.\
00 05 10 15 20 25 30
(b) Particle-Particle Collision Angle [rad]

Fig. 8. Distribution of the mean relative velocity modulus between colliding particles (a) and the particle—particle
collision angle (b), comparison of the stochastic model with large eddy simulations (p, =200 kg/m3, St =5.8,
o =0.0141).
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Fig. 9. Modulus of the mean relative velocity of colliding particles as a function of Stokes number, comparison of
uncorrelated and correlated model (o = 0.0176).

number of about 0.4. With further reducing the particle Stokes number, the velocity of colliding
particles becomes more and more correlated and hence a decrease in the mean relative velocity is
observed. For small particles a limiting value is approached corresponding to particles completely
following the turbulent fluctuations. By not accounting for the velocity correlation for light
particles, the mean relative velocity and hence the collision frequency are completely overpre-
dicted. For heavy particles the same mean relative velocity is obtained as for the kinetic theory
approach which one would of course expect.

A similar behaviour is observed for the mean square value of the relative velocity distribution
(Fig. 10). The uncorrelated model (i.e. kinetic theory) gives a continuous broadening of the rel-
ative velocity distribution with decreasing Stokes number, while the correlated model predicts
considerably smaller values for Stokes numbers below about 10. For comparison also the fitting
proposed by Williams and Crane (1983) is included in Fig. 10. Their correlation (see Eq. (5))
shows the same behaviour as the proposed correlated model, but with a maximum in the mean
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Fig. 10. Mean square value of the absolute relative velocity of colliding particles, comparison of uncorrelated and
correlated models (¢ = 0.0176) and with the correlation proposed by Williams and Crane (1983).
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Fig. 11. Dependence of the ratio of simulated collision frequency to the collision frequency obtained from the kinetic
theory limit on the particle Stokes number (symbols of one kind indicate the results for the different volume fractions,
see Table 1).

square value located near a Stokes number of 6. Moreover, their values in this region are slightly
above the result obtained from kinetic theory which reveals some deficiencies of their fitting. Since
solid particles in air are considered in the present study, the correlation proposed by Williams and
Crane (1983) is identical with that provided by Kruis and Kusters (1997).

As a result of the reduction of the mean relative velocity due to the correlation effect, also the
average collision frequency will be reduced. This effect may be illustrated by comparing the
simulated average collision frequency with that resulting from the kinetic theory limit, which
corresponds to the average collision frequency obtained without correlation. In Fig. 11 the ratio
of the calculated collision frequency to that predicted by kinetic theory is plotted versus Stokes
number. For very large Stokes numbers the frequency ratio approaches unity. With decreasing
Stokes number the frequency ratio is continuously reduced due to the increasing degree of cor-
related motion of colliding particles. The predicted increase of the frequency ratio with Stokes
number is in very good agreement with the LES data.

Fig. 12 shows the collision frequency obtained from the model calculations for a wider range of
Stokes numbers. As expected from the mean relative velocity, the uncorrelated model predicts a
continuous increase of the collision frequency with decreasing Stokes number. The correlated
model however predicts a maximum in the collision frequency for a Stokes number of about 0.4.
For smaller Stokes numbers a decrease of the collision frequency is found and in the limit of
particles completely following the turbulent fluctuations (i.e. St — 0) will be approached. The
predicted shape of both curves is very similar to the result of Sundaram and Collins (1997) ob-
tained by DNS for different turbulence properties.

6. Binary mixture of particles

The second test case for validating the stochastic inter-particle collision model was again an
isotropic homogeneous turbulence. However, now a binary mixture of particles (fractions A and
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Fig. 12. Dependence of the ratio of simulated collision frequency to the collision frequency obtained from the kinetic
theory limit on the particle Stokes number (a = 0.0176).

B) is considered. In the LES of Gourdel et al. (1998) the same turbulence properties were used as
in the previous case (see Table 1). The particle size was 650 pum and two classes of particles (i.e.
with different response times) were generated by using different densities (i.e. p, = 117.5 kg/m3
and pp = 235 kg/m’). The volume fraction of class A particles was fixed with 1.3 x 102 and that
of class B particles was varied between 6.5 x 10~* and 4 x 102, Again completely elastic collisions
were considered (i.e. e = 1.0, u = 0).

The first series of calculations was performed for a granular medium without particle-fluid
interaction and under zero-gravity conditions in a cube with 0.2 m x 0.2 m x 0.2 m. This implies
that the particle motion is solely governed by inter-particle collisions and the initial fluctuation of
the particles upon injection into the computational domain. The particle injection and tracking
procedure was identical to that for the case of the isotropic homogeneous turbulence. The initial
particle velocity components upon injection were sampled from a normal distribution function
with a mean velocity of zero and a fixed rms value of 0.29 m/s for all cases considered.

For validating the model calculations the velocity distributions of one component for both
particle fractions were compared with the results from the LES. From Fig. 13 it is obvious that
the model results are in excellent agreement with the simulations. In the following the kinetic
energy of the particles fluctuating motion is used to characterise the effect of inter-particle col-
lisions (Fig. 14). As expected the kinetic energy of fluctuation is higher for the lighter particles
(class A) than for the heavier particles (class B). With increasing total number density (i.e. in this
case the number density of fraction A is constant and the number density of fraction B is in-
creasing) the energy of particle fluctuation is increasing for both fractions due to the increase in
total collision frequency. The model calculations are in good agreement with the LES-data. Only
for large concentrations of fraction B, a slight overprediction of the fluctuations of both fractions
is observed.

The calculated collision frequencies between particles of fraction A (faa) and between both
fractions (fag) as a function of the volume fraction of class B particles are compared in Fig. 15
with the results of the LES. The collision frequency faa slightly increases with the volume fraction
op, since the fluctuating intensity of fraction A particles is increasing (see Fig. 14). With increasing
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Fig. 13. Particle velocity distributions for both fractions, comparison of model calculations and LES results
(2a = 1.3 x 1072 and a3 = 5.0 x 107%).
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Fig. 14. Kinetic energy of particle fluctuating motion for fractions A and B, comparison of model calculations with
LES data for a granular medium.

the fraction of B-particles the collision frequency fap increases linearly as expected. Similarly, the
collision frequency between fraction B particles increases linearly with the volume fraction of
B-particles (Fig. 16). Since the number concentration of A-particles is constant, the collision
frequency fpa only is slightly increasing with ap, again as a result of the increasing fluctuation
intensity of both fractions. All these effects are very well captured by the model calculations and
the agreement with the LES is very good (Figs. 15 and 16).

In the second case, a binary mixture settling under the action of gravity (i.e. g, = 49.05 m/s?) in
a cube with homogeneous isotropic turbulence is considered. Since for this situation the particles
are settling through the computational domain, the inlet and boundary conditions are different
from those in the previous case. The particles are injected in the direction of gravity randomly
distributed over the inlet face of the cube. The initial particle velocity component in the direction
of gravity for both particle classes was sampled from a normal distribution function with a mean
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Fig. 15. Collision frequencies for fraction A and between fractions A and B, comparison of model calculations with
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Fig. 16. Collision frequencies for fraction B and between fractions B and A, comparison of model calculations with
LES data for a granular medium.

value close to the terminal velocity and an rms value which was between 20% and 100% of that of
the gas phase, depending on the particle Stokes number. For the lateral velocity components
particle mean velocities of zero and rms values corresponding to the streamwise component were
specified. Each (computational) particle is again tracked for 3 s with a fixed time step of 0.5 ms.
Particles leaving the computational domain at one face of the cube are re-injected at the opposite
during this time period. In order to obtain a steady state situation at the end of the computation,
the particle inlet velocities (mean velocities and rms values) are updated during the iteration
process. This implies that after tracking 2000 particles, each for 3 s, new velocities of the particles
are obtained and used as inlet condition for the next iteration step. For the considered cases, 20
iterations were found to be sufficient to approach a steady state situation.

The collisions between particles in this test case are mainly determined by the mean drift
between the two particle fractions as a result of their different terminal velocities. In addition
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collisions are induced by the fluctuating motion of the particles which is partly caused by tur-
bulence. Hence, the collisions between the two particle fractions cause a momentum transfer
between the two fractions, whereby the mean velocity (i.e. in the direction of gravity) of the light
particles (fraction A) becomes larger than their terminal velocity and for the heavy particles the
settling is hindered by collisions with the light particles (Fig. 17). At low volume fractions of class
B particles, the heavy particles are strongly hindered by the light ones and hence the heavy particle
mean velocity is about 19% smaller than their terminal velocity. With increasing volume fraction
of class B, the heavy particles drag the light particles and their mean velocity increases, while the
mean velocity of the heavy particles also increases and approaches the expected terminal velocity.
These effects are well reproduced in the model calculations and the agreement with the LES-
results is reasonably good.

Some larger differences between LES and model results are found for the kinetic energy of the
particles (Fig. 18). Below a volume fraction of ag =4 x 1073 the fluctuating energy is underes-
timated by the model, whereas above this value an overprediction is found. One reason may be the
slight overprediction of the mean velocity of the lighter particles (Fig. 17). However, the increase
of the kinetic energy of the light particles (fraction A) with the volume fraction oy is also captured
by the model. The fluctuating energy of the heavy particles on the other hand is not changing
largely with their volume fraction. It should be also emphasised that the particles fluctuating
motion is considerably damped by the interaction with the flow. This is obvious by comparing the
result in Fig. 18 with that for the granular medium (Fig. 14).

Considering the collision frequencies for this case (Fig. 19), it is obvious that fx4 is considerably
smaller than for the granular medium (Fig. 15), which is caused by the particle-flow interaction.
With increasing concentration of fraction B the collision frequency of fraction A (faa) increases at
a higher rate compared to the result in Fig. 15 due to a stronger increase of the fluctuating motion
of fraction A (see Fig. 18). The collision frequencies between fractions A and B are about the same
than for the granular medium. This indicates that the reduction of collision frequency due to
particle-flow interaction is balanced by the mean relative drift between both fractions. The
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Fig. 17. Mean particle velocities for fractions A and B, comparison of model calculations with LES data for a binary
mixture settling under gravity.
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Fig. 18. Kinetic energy of the particles fluctuating motion for fractions A and B, comparison of model calculations with
LES data for a binary mixture settling under gravity.
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Fig. 19. Collision frequencies for fraction A and between fractions A and B, comparison of model calculations with
LES data for a binary mixture settling under gravity.

comparison with the LES data shows a slight underprediction of the collision frequency fag,
which is associated mainly with the underprediction of the mean drift between the two particle
fractions (see Fig. 17).

In the calculations introduced so far, the collision process was assumed to be perfectly elastic.
In practical situations however an inter-particle collision is inelastic and associated with friction
between the particles. In order to analyse these effects, additionally calculations for different
restitution and friction coefficients were performed for the binary mixture of particles settling
under gravity in a homogeneous isotropic turbulence. Both the friction coeflicient and the resti-
tution ratio considerably altered the fluctuating motion of the particles. As a result of the energy
dissipation through inter-particle collisions the kinetic energy of the particles fluctuation is con-
siderably damped for both fractions (Fig. 20). However, the damping is more pronounced for the
light particles (Fig. 20(a)) whereby the fluctuating energies of both fractions approach each other



1854 M. Sommerfeld | International Journal of Multiphase Flow 27 (2001) 1829-1858

| —o— e=1.0,u=0.0
—eo— e=1.0, u=0.4 I
0.08- | __o- e=0.75, u=0.4 _——0]
1| e e=0.50, u=0.4 °
0064 : : 1
z —
E  0.04] 1
.
xﬂ_
0.02- 1
0.00 ) '
1E-3 0.01
(a) -]
—a— e=1.0, u=0.0
0.05 —A— e=1.0,u=04 ————
--A-- e=0.75, u=0.4
---A-- e=0.50, n=0.4
0.04- 1
______ B _ [— |
A-- =0.25, u=0.4 P
" 0.031 ]
B
o o Ao N |
& 0024 A--ooooo . N
4 A AT A ER \\‘\
~~~~~ ~A__ - R
oot{ T RS
| . : B
1E-3 0.01

(b) og[-]

Fig. 20. Influence of restitution coefficient and friction on the kinetic energy of the particles fluctuating motion for
fractions A and B (binary mixture settling in homogeneous isotropic turbulence).

with decreasing restitution ratio (i.e. with increasing momentum loss). In addition the damping
effect becomes more pronounced with increasing overall volume fraction of particles since the
number of inter-particle collisions is also linearly increasing with particle concentration (Fig. 20).

The reduction of the particle mean fluctuating velocities with decreasing restitution coefficient
also has a considerable effect on the collision frequency. Since the collisions between particles of
fraction A (faa) and B (fgp) are determined by the fluctuating motion of the particles, both
collision frequencies are reduced (Fig. 21(a) and (b)) by considering friction and/or inelastic
collisions. With decreasing restitution coefficient a continuous reduction is observed. The colli-
sions between the two particle fractions (i.e. fag and fpa) are not only caused by their fluctuating
motion, but mainly by the mean drift between them. The mean drift velocity between the two
fractions on the other hand is the result of the momentum transfer induced by inter-particle
collisions. Since inelastic collisions are associated with a momentum loss the available momentum
to be transferred between the two fractions is reduced. Hence, the mean drift between the heavy
and light particles is increasing with decreasing restitution coefficient (Fig. 22). For the case with
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Fig. 21. Influence of restitution coefficient and friction on the collision frequencies faa,fas, /s, and fpa (binary
mixture settling in homogeneous isotropic turbulence).
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Fig. 22. Influence of restitution coefficient on the mean particle velocities for fractions A and B (binary mixture settling
in homogeneous isotropic turbulence, ag = 0.04, u = 0.4).
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the highest volume fraction (i.e. oy = 4.0 x 1072) the heavy particle settling velocity is increasing
and the light particle settling velocity is again reduced or remains constant for the smallest volume
fraction ap = 6.5 x 1073, both with decreasing restitution ratio. Therefore, the collision fre-
quencies fxg and fpa are influenced by two effects:

e The reduction of the mean fluctuating velocity should reduce these collision frequencies, espe-

cially for larger og.

e The increase of the mean drift should increase the collision frequencies, especially at lower .
These effects explain the modification of the collision frequencies fap and fga shown in Fig. 21.
For low ag (i.e. up to about ag = 5.0 x 10~%) the consideration of inelastic collisions results in a
slight increase of the collision frequencies between the two fractions, whereas, at higher values of
ag a more pronounced decrease is observed.

7. Conclusions

It has been demonstrated that the developed stochastic inter-particle collision model predicts the
correct particle phase properties and collision frequencies for the behaviour of monodisperse par-
ticles in a homogeneous isotropic turbulence field if the correlation of the velocities of colliding
particles is accounted for properly. The model calculations for the dependence of the collision fre-
quency on the turbulent particle Stokes number for a given volume fraction of particles show a
maximum in the collision frequency for Stokes numbers of about 0.4. With decreasing Stokes
number the collision frequency is reduced due to the increasing velocity correlation of colliding
particles and a limiting value is approached for particles following the turbulence. With increasing
Stokes number the collision frequency reduces and approaches the kinetic theory limit. Model
calculations without considering the correlated particle motion in a homogeneous turbulence field
yield a considerable overprediction of the collision frequencies for particle Stokes numbers below
about 10. For the smallest Stokes numbers considered the difference is about one order of magnitude.

Also the collision frequencies of a granular medium (i.e. without particle-flow interaction)
consisting of two fractions of particles and the associated fluctuating velocities could be correctly
predicted by the model. In the case of a binary mixture settling under the action of gravity in a
homogeneous isotropic turbulence, the momentum transfer between the two fractions due to
collisions becomes important in the prediction of the terminal velocities. The effect that the light
particles hinder the settling of the heavy particles if their volume fraction is low and that a high
volume fraction of heavy particles results in a dragging of the light particles is properly predicted
by the model and a good agreement with the LES data is obtained.

The analysis of the effect of inelastic and frictional collisions for the binary mixture settling
under gravity revealed a considerable damping of the fluctuating velocities of both particle
fractions with decreasing coeflicient of restitution and increasing friction coefficient. This dem-
onstrates the great importance of accounting for inelastic collisions when a prediction of practical
gas-particle systems is anticipated. Moreover, detailed data are required of the restitution and
friction coefficients for inter-particle collisions.

The introduced stochastic inter-particle collision model for the Euler/Lagrange approach is
very economic with regard to computer time, since it does not require to search for possible
collision partners in the vicinity of the considered particle.
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Since the present model is limited to inertial particles with respect to the dissipation scale of
turbulence, further studies are required to extend the range of validity to very small particles.
Moreover, the present model is valid only for a 100% collision efficiency, namely for cases were
the particle size is not too different. The model has been already extended to allow the consid-
eration of the collision of small and large particles on the basis of a theoretically evaluated impact
efficiency. This extension is especially important for agglomeration processes.
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